METRIC SPACES: FINAL EXAM 2014

DOCENT: A. V. KISELEV

Evaluation: $\min \left(100\%, \max(5 \text{ prb} \times 20\% \cdot \begin{bmatrix} 1.00 \\ 1.15^{\text{top}} \end{bmatrix}, \sum_{i=1}^{6} h/w \times 5\% + 5 \text{ prb} \times 14\% \cdot \begin{bmatrix} 1.00 \\ 1.15^{\text{top}} \end{bmatrix} \right) \right)$.

Problem 1. For all $x, y \in \mathbb{R}$ put $d(x, y) = \frac{|x - y|}{1 + |x - y|}$ by definition. Prove that the function $d: \mathbb{R} \times \mathbb{R} \to [0, 1)$ is a metric on \mathbb{R} .

Problem 2. Let $(\mathfrak{X}, \mathrm{d}_{\mathfrak{X}})$ be a metric space and $S \subseteq \mathfrak{X}$ be a bounded subset in it. Prove that the closure \overline{S} is bounded and $\dim \overline{S} = \dim S$. (By definition, $\dim(\emptyset) = 0$ and $\dim(S) = \sup_{x,y \in S} \mathrm{d}_{\mathfrak{X}}(x,y)$ for a non-empty bounded set $S \subseteq \mathfrak{X}$.)

Problem 3. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\{A_i \mid i \in \mathcal{I}\}$ be a family of connected subsets $A_i \subseteq \mathfrak{X}$ such that $A_i \cap A_j \neq \emptyset$ for all indexes $i, j \in \mathcal{I}$. Prove that the union $A = \bigcup_{i \in \mathcal{I}} A_i$ is connected.

Problem 4. Suppose for every $n \in \mathbb{N}$ that V_n is a non-empty closed subset of a sequentially compact space \mathfrak{X} and $V_n \supseteq V_{n+1}$. Prove that

$$\bigcap_{n=1}^{+\infty} V_n \neq \varnothing.$$

• Is this intersection always non-empty if the hypothesis of sequential compactness is discarded? (state and prove, e.g., by counterexample)

Problem 5. Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a non-empty complete metric space. Suppose that $f, g: \mathfrak{X} \to \mathfrak{X}$ are two Banach's contractions of \mathfrak{X} . Prove that there always exists a unique point $x_0 \in \mathfrak{X}$ such that $f(g(x_0)) = x_0$.

Date: April 3, 2014.

Do not postpone your success until May Day. GOOD LUCK!